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The Outbreak of COVID-19

B COVID-19 takes a devastating impact on
« Society
 Economy
* Public healthcare

Global Situation - A paily
538,321,874

confirmed cases

6,320,599

Source: World Health Organization

% Data may be incomplete for the currenfpeest ™ Mar31 Jm3® = Sep3 = Dee3d  Msr31  Jm30  Sep20  Dec31  Mar31
% day or week.

Source: https://covid19.who.int
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Al-Empowered COVID-19 Detection

B Deep learning increases medical image processing
capabilities
« CNN

B Chest X-ray (CXR) is capable of executing COVID-19
detection

* Rapid
 Convenient
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Motivation

B Cloud-based vs. edge computing
» Unpredictable remote server and communication latency
« Unbearable bandwidth pressure with massive raw data
uploading
« Computational resources near the end devices

Cloud Layer
Yoy
T Global Model

= Backbone Link

End Layer

S % Sy
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Motivation

B Training efficiency and resource utilization
« The training process of the DL model is resource-intensive

 The model parameters and required computational
resources are generally large

« Edge nodes with limited resources (e.g., processor,
memory, and bandwidth) hardly undertake multiple training
tasks

Training efficiency frontier ® Frontie
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Motivation

B Trade-off between training delay and energy cost

« Each edge node may perform one or more training tasks in
parallel

* The inappropriate resource allocation strategies result in
longer training delay and higher energy of some tasks
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System Model and Problem Formulation

» Distributed edge learning model
» Cloud aggregation model

» Optimization problem formulation
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Distributed Edge Learning Model

B Local training on edge node
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immediate computing
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B Model parameters
uploading for edge node
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immediate bandwidth allocation
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Global Aggregation: W (t) = 212
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Cloud Aggregation Model

B Cloud aggregation depends on
the last finished training task

Time
Training Task 1 Teomp upload |
first to done!
total = G+ Max {T&mﬁp + T;r%oad} Training Task 2 e pupload
meM,neN 2 d
Training Task 3 T Tupload
A
N M Training Task 4 Teenp Tupload
A = . E E ¢ rpcomp urrupload
total — G pnTman +pnTm,n N M
n=1 m=1 ZZ‘D’”,” wm,n (f)
Global Aggregation: W (t) = 212 ]

But aggregation conducts when task 3 finishes
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Optimization Problem Formulation

B Goal: to jointly minimize the training time and energy
consumption during the training phase

min Tioial + Nk,
(7b) Nrltotal T NELtotal
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Design of DisCOV

»> DisCOV Overview
» Lightweight Model-Based Distributed Training Algorithm

» Dynamic Resource Allocation Algorithm
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DisCOV Overview

B Lightweight Model-Based Distributed Training (LDT)
* Training in parallel
» Collaborative training

B Dynamic Resource Allocation (DRA)
» Time-varying resource allocation
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Lightweight Model-Based Distributed Training Algorithm

B Model training conducts at the edge with edge-cloud
collaboration

« end device with constrained computation and storage
* raw data uploading exhausts bandwidth resources

 split total data transmit to each edge node to release
computing pressure

B Training with|lightweight model
* less model parameters
* less computations
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Lightweight Model-Based Distributed Training Algorithm

B We propose the LDT to Algorithm 1. LDT
.. Input: M, N, G, L, Dy, W, Wy 1, LOSSm n(w);
perform the training phase  output: Global parameter W;
// Initialization
Initialize G and L,,;
Initialize W, wy, ,, and Lossy, ,(w);
for iteration =1 to G do

for each training *A-“-kiu in parallel|do

<4+ // Edge training

training task in edge nodes

processes data samples in 5: forl=1to L, do
para”el 6: fork e D,,, do
7 ES n chooses one local sample & € D,, ,, from
CXR device m;
8: Calculate the loss function lossy(w) of one
sample k;
% end
10: Calculate the loss function by (5);
11: Update the local parameters wy, ,, by (6);
: end
13: Transmit the local parameters w;,,, from ES n to the
update the model parameter clods
14: end
/ Cloud aggregation
Update the glocal paramaters of the aggregation by
(13);
16: end
17: return W;
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Dynamic Resource Allocation Algorithm

B The formulated problem can naturally be expressed as
Markov decision processes (MDP)

« States
S(1) = {C(0), F(1), K(1), R(2), B(1)}
- training data size from CXR devices
- required computing resources
- size of model parameters
- available resources of ESs
» Actions
A) = {/1), b(1)§
- allocated computation resources
- allocated bandwidth resources
 Reward

R(S(0), A()) = -(n7T+ ngE)

© 2022 X. Xiao, H. Tian, X. Zhang, L. Qi, et al. 16



Dynamic Resource Allocation Algorithm

B DRL-based resource (] | | [ )] |
allocation algorithm SN |

. . Reward
to dynamically dispatch N
computing and bandwidth | ™ ou
. Network Network
* environment-aware

- actions perform at each

time slot T—— L T ’

Lc(0) = E[min(p(0) Ay ,|cl }N\A
1+&

avoid to over-update
improve the performance stability

Old
Actor Actor
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Experimental Evaluation

B Training performance on different methods
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Experimental Evaluation

B Training performance on different fractions of dataset
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Experimental Evaluation

B Performance of training delay and energy cost on different
computation and bandwidth resources
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Summary & Conclusions

H DisCOV
e LDT

— Lightweight model-based training with edge-cloud collaboration
— Training in parallel with cooperation of edge nodes

- DRA

— Original problem models into MDP problem
— Dynamic allocation of computing and communication resources

» Faster training speed with 64% reduction of data transmission
B Future work

 Distributed training architecture with decentralized mode

* Fine-grained training task scheduling scheme

* Implementation of the prototype
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