

DisCOV: Distributed COVID-19 Detection on X-Ray Images with Edge-Cloud Collaboration

Xiaolong Xu^{*}, Hao Tian^{*}, Xuyun Zhang[#], Lianyong Qi[†], Qiang He[‡], Wanchun Dou[§]

*Nanjing University of Information Science and Technology, #Macquarie University, †Qufu Normal University, \$Swinburne University of Technology, \$Nanjing University

Outline

Background

- The Outbreak of COVID-19
- AI-Empowered COVID-19 Detection
- Motivation
- System Model and Problem Formulation
 - Distributed Edge Learning Model and Cloud Aggregation Model
 - System Latency and Energy Consumption Maximization
- Design of DisCOV
 - Lightweight Model–Based Distributed Training Algorithm
 - Dynamic Resource Allocation Algorithm
- Experimental Evaluation
- Summary & Conclusions

© 2022 X. Xiao, H. Tian, X. Zhang, L. Qi, *et al*.

- Public healthcare
- SocietyEconomy

The Outbreak of COVID-19

COVID-19 takes a devastating impact on

AI-Empowered COVID-19 Detection

- Deep learning increases medical image processing capabilities
 - CNN

Chest X-ray (CXR) is capable of executing COVID-19 detection

- Rapid
- Convenient

Motivation

Cloud-based vs. edge computing

- Unpredictable remote server and communication latency
- Unbearable bandwidth pressure with massive raw data uploading
- Computational resources near the end devices

Motivation

Training efficiency and resource utilization

- The training process of the DL model is resource-intensive
- The model parameters and required computational resources are generally large
- Edge nodes with limited resources (e.g., processor, memory, and bandwidth) hardly undertake multiple training tasks

Motivation

Trade-off between training delay and energy cost

- Each edge node may perform one or more training tasks in parallel
- The inappropriate resource allocation strategies result in longer training delay and higher energy of some tasks

System Model and Problem Formulation

- Distributed edge learning model
- Cloud aggregation model
- > Optimization problem formulation

Distributed Edge Learning Model

Cloud Aggregation Model

Cloud aggregation depends on the last finished training task

$$T_{total}^{e} = G \cdot \max_{m \in \mathcal{M}, n \in \mathcal{N}} \left\{ T_{m,n}^{comp} + T_{m,n}^{upload} \right\}$$

$$T_{total}^{e} = G \cdot \sum_{n=1}^{N} \sum_{m=1}^{M} p_{n}^{c} T_{m,n}^{comp} + p_{n}^{u} T_{m,n}^{upload}$$

$$T_{raining Task 4} \underbrace{T^{comp} \qquad T^{upload}}_{Training Task 4} \underbrace{T^{comp} \qquad T^{upload}}_{Training Task 4} \underbrace{T^{comp} \qquad T^{upload}}_{Global Aggregation: W(t) = \frac{\sum_{n=1}^{N} \sum_{m=1}^{M} |D_{m,n}|_{W_{m,n}(t)}}{|D|}}$$

But aggregation conducts when task 3 finishes

Time

Optimization Problem Formulation

11

Goal: to jointly minimize the training time and energy consumption during the training phase

$$\min_{(f,b)} \qquad \eta_T T_{total} + \eta_E E_{total} \tag{1}$$

s.t.

$$Q_m \in \{0, 1\}, \forall m \in \mathcal{M},\tag{2}$$

$$x_{m,n} \in \{0,1\}, \forall m \in \mathcal{M}, n \in \mathcal{N},$$
(3)

$$0 \le \sum_{m=1}^{M} x_{m,n} Q_m f_{m,n} \le F_n, \forall n \in \mathcal{N},$$
(4)

$$0 \leq \sum_{m=1}^{M} x_{m,n} Q_m b_{m,n} \leq B_n, \forall n \in \mathcal{N},$$
(5)

Design of DisCOV

- DisCOV Overview
- Lightweight Model–Based Distributed Training Algorithm
- > Dynamic Resource Allocation Algorithm

DisCOV Overview

Lightweight Model–Based Distributed Training (LDT)

- Training in parallel
- Collaborative training

Dynamic Resource Allocation (DRA)

Time-varying resource allocation

Lightweight Model–Based Distributed Training Algorithm

Model training conducts at the edge with edge-cloud collaboration

- end device with constrained computation and storage
- raw data uploading exhausts bandwidth resources
- split total data transmit to each edge node to release computing pressure

Training with lightweight model

- less model parameters
- less computations

train at the edge

Lightweight Model–Based Distributed Training Algorithm

We propose the LDT to		Algorithm 1. LDT			
perform the training phase	Input: $\mathcal{M}, \mathcal{N}, G, L_n, D_{m,n}, W, w_{m,n}, Loss_{m,n}(w);$ Output: Global parameter W ;				
training task in edge nodes	1: 2: 3: 4:	Initialize G and L_n ; Initialize W, $w_{m,n}$, and $Loss_{m,n}(w)$; for iteration = 1 to G do for each training task in parallel do			
processes data samples in parallel	5: 6:	// Edge training for $l = 1$ to L_n do for $k \in D_{m,n}$ do			
	7:	ES <i>n</i> chooses one local sample $k \in D_{m,n}$ from CXR device <i>m</i> ;			
update the model parameter	o: 9:	sample k; end			
	10: 11: 12:	Calculate the loss function by (5); Update the local parameters $w_{m,n}$ by (6);			
	13:	Transmit the local parameters $w_{m,n}$ from ES n to the cloud;			
	14: 15:	end // Cloud aggregation Update the glocal paramaters of the aggregation by			
		(13); end return W;			

The formulated problem can naturally be expressed as Markov decision processes (MDP)

Dynamic Resource Allocation Algorithm

States

 $S(t) = \{C(t), F(t), K(t), R(t), B(t)\}$

- training data size from CXR devices
- required computing resources
- size of model parameters
- available resources of ESs
- Actions

 $A(t) = \{f(t), b(t)\}$

- allocated computation resources
- allocated bandwidth resources
- Reward

 $R(S(t), A(t)) = -(\eta_T T + \eta_E E)$

Dynamic Resource Allocation Algorithm

- DRL-based resource allocation algorithm to dynamically dispatch computing and bandwidth
 - environment-aware
 - actions perform at each time slot

$$L_{C}(\theta) = E[\min(\varrho(\theta)A_{\theta'}, clip(\varrho(\theta), 1 - \delta, 1 + \delta)A_{\theta'})]$$

$$1 + \varepsilon \qquad 1 + \varepsilon \qquad 1 + \varepsilon \qquad 1 + \varepsilon \qquad 1 + \varepsilon \qquad avoid to over-update improve the performance stability$$

Experimental Evaluation

Training performance on different methods

Expected testing accuracy	85%		90%		93%		94%	
	Elapsed time	Iterations						
Benchmark	118.45s	3	447.44s	12	1210.84s	33	-	-
SqueezeNet	116.97s	5	566.49s	26	2921.37s	126	-	-
DarkCovidNet	200.08s	16	785.56s	60		-	-	
LDT	66.98s	2	160.18s	5	679.5s	30	1392.62s	53

Experimental Evaluation

Training performance on different fractions of dataset

Experimental Evaluation

Performance of training delay and energy cost on different computation and bandwidth resources

© 2022 X. Xiao, H. Tian, X. Zhang, L. Qi, et al.

DisCOV

- LDT
 - Lightweight model-based training with edge-cloud collaboration
 - Training in parallel with cooperation of edge nodes
- DRA
 - Original problem models into MDP problem
 - Dynamic allocation of computing and communication resources
- Faster training speed with 64% reduction of data transmission

Future work

- Distributed training architecture with decentralized mode
- Fine-grained training task scheduling scheme
- Implementation of the prototype

Thanks!